Algebraic Groups and Discontinuous Subgroups by A. Borel, G. Mostow PDF

By A. Borel, G. Mostow
Read or Download Algebraic Groups and Discontinuous Subgroups PDF
Similar algebra books
Dieses Buch mit seinen zahlreichen Fragen und Antworten sowie Aufgaben und Lösungen wendet sich vorwiegend an Studierende natur- und ingenieurwissenschaftlicher Studiengänge der ersten Semester an Technischen Universitäten und Fachhochschulen. Im Mittelpunkt stehen Vektoren, Determinanten und Matrizen, lineare Gleichungssysteme, Eigenwerte und Eigenvektoren quadratischer Matrizen, Gerade und Ebene im Raum, Verschiebung und Drehung von Koordinatensystemen, Kegelschnitte.
- Observations about two biquadratics, of which the sum is able to be resolved into two other biquadratics
- Operator Algebra and Dynamics: Nordforsk Network Closing Conference, Faroe Islands, May 2012
- Lecture Notes on C-algebras and Quantum Mechanics. [jnl article]
- Applied Algebra, Algebraic Algorithms and Error-Correcting Codes: 12th International Symposium, AAECC-12 Toulouse, France, June 23–27, 1997 Proceedings
- Algebra, an Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges: Volume II
- Differential Algebra and Related Topics: Proceedings of the International Workshop, Newark Campus of Rutgers, The State University of New Jersey, 2-3 November 2000
Extra resources for Algebraic Groups and Discontinuous Subgroups
Example text
E. In the former hence x _< b I ~ a 5 and and again B(a,b) a p case, and and the a ~ b _< D ( a A b) = D ( p ) p _< a I v a 3. Similarly a i _< a and the (b I v x) since separation property relation. Since transitivity of E) B(a,b) holds. holds. or Otherwise, an a t o m atoms M(L) has the e x - [0,a I ~ a 2 ~ b I v P ] L either we h a v e All (since (b I v b3) A (a I ~ a 2 ~ p) # 0 a I ~ a 2 ~ p _< a in we have p _< b I v b3, b i _< b. aI ~ a2 ~ bI ~ b 2 = aI ~ bI ~ p fails, a6 < p _< a A b p _< b 2 v b 4 are under property); bI E b3 since A (a I ~ a 2 ~ p) _> p # 0, bI E x (b 3 v x) an atom E = A fails b2 E x (a I ~ a 2 ~ p) # 0.
A v = I, 1 E J(L), then a v = i v = i_ E ~(L). 2. If (ii) k Proof. 1, ducts of non-void (ii) ~ (i) ~ [0} U [i} But (iv) follows The is a complete lattice. Moreover ~(L) U [0} U [i} if these and sums in L. from Lemma to show that ~(L) U [0} is closed under pro- ~ ~ S=J(L) U [0}. U[O}, [0}. in (1) c Immediate subsets. ScJ(L) (iii). is a complete Suppose a £ J ( L ) U ~O} U ~i}. a ~J(L)U of sets for are equivalent: (iii) J ( L ) U [O} U ~i} then ~products (ili) it suffices By hypothesis, course is maximal; are the same as in Lemma S~.
U[O}, [0}. in (1) c Immediate subsets. ScJ(L) (iii). is a complete Suppose a £ J ( L ) U ~O} U ~i}. a ~J(L)U of sets for are equivalent: (iii) J ( L ) U [O} U ~i} then ~products (ili) it suffices By hypothesis, course is maximal; are the same as in Lemma S~. L E ~r' then the following are satisfied ~(L) U [0} U [l} rings are maximal. 1. then U~O}. (iii) ~ Let S = ~IJ If from Lemma a=NS. 2. 59 6. THE CASE THAT J(L) We note that for complete lattice AND ~(L) LE2r ARE COMPLETE LATTICES FOR the condition that algebra.
Algebraic Groups and Discontinuous Subgroups by A. Borel, G. Mostow
by Joseph
4.3